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Determination of the Eigenfrequencies of a
Ferrite-Filled Cylindrical Cavity Resonator
Using the Finite Element Method

Gilbert C. Chinn, Larry W. Epp, and Gregory M. Wilkins

Abstract—A formulation of the Finite Element Method (FEM) partic-
ular to axisymmetric problems containing anisotropic media is compared
to an analytic solution. In particular, the resonant frequencies of a
longitudinally biased ferrite-filled cylindrical cavity are examined. For
comparison, a solution of the characteristic equation for the lossless,
ferrite-filled cylindrical waveguide was modified to give the resonant
frequencies of the cylindrical cavity. This analytical solution was then
used to examine the error in the FEM formulation for the anisotropic case.
1t is noted that the FEM formulation for anisotropic material presented,
based on both node and edge-based elements, is found to be free of
spurious solutions.

Manuscript received January 24, 1994; revised September 8, 1994. This
work was supported by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space
Administration

G C. Chinn and L. W. Epp are with the Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA 91109 USA.

G. M. Wilkins is with Morgan State University, Baltimore, MD USA.

IEEE Log Number 9410350.

1207

1. INTRODUCTION

T IS NATURAL to extend tangential vector finite elements to

not only inhomogeneities, but to the anisotropic case. Specifically,
Wang and Ida [1] were able to show that this extension could be free
of spurious modes. Their method was based on the use of tetrahedral
and hexahedral elements. They noted that for permeability tensors
without off-diagonal terms, symmetry could be applied to simplify
the analysis. This simplification, however, is not suitable for ferrite-
filled cylindrical cavities. For a ferrite-filled cylindrical waveguide,
Dillon et al. [2] applied periodic boundary conditions to solve for
phase constants. This procedure reduces the order of the solution to
one-half of the original three dimensional problem.

Another method of reducing computational complexity is detailed
here. By applying a Fourier mode expansion to the fields in these
azimuthally invariant geometries, simplification is inherent. All modal
information is retained, important for the ferrite-filled cavity where
the resonant frequencies of the £n modes can differ. The FEM
analysis is thus effectively reduced to two dimensions.

Axisymmetric geometries of interest in the past included circular
waveguides filled with longitudinally biased ferrites. Solutions for
the phase constants of these ferrite-filled circular waveguides can be
modified for the ferrite-filled cavity. Application of the appropriate
boundary conditions then gives a characteristic equation which is
solved for the eigenfrequencies. This solution will be outlined, and
used as comparison for the FEM analysis.

II. FiNiTE ELEMENT FORMULATION

The tensor characterizing a longitudinally biased ferrite is given by

S T
p=ju p 0 ¢y
0 0 =

where 1, ¢', and p. are functions of frequency and the DC biasing
field for a magnetized ferrite. Because of the axisymmetry of the
problem, the weak form of the wave equation is written in terms of
electric field components normal and transverse to the ¢ direction
using first order triangular nodal elements and first order edge-based
finite elements [3]. The field is then expanded as a Fourier sum over
the azimuthal variable, ¢. The basis elements for this expansion are
chosen to go as e/™®. This choice is necessary in order to correctly
model the fields within media characterized by (1). Moreover, it also
allows the eigenvalues, corresponding to the eigenfrequencies here, to
be found independently for each value of n by solving the generalized
eigenvalue equation for the cavity

[S{a} = K3[THa}. @

This formalism yields sparse real-symmetric [S] and [T] matrices for
lossless, Hermitian z tensors. Consequently, standard mathematical
library routines are used to solve the generalized eigenvalue equation.

III. ANALYTIC CHARACTERISTIC EQUATION

The analytic characteristic equation for cylindrical ferrite waveg-
uides is due to Kales [4]. In this section, a brief summary of its
modification for the particular case of a metallic cavity is presented.
The cavity under consideration has a radius of R and a length of L
and is filled with a single material described by (1).

Application of the boundary conditions at the ends of the cavity
requires the longitudinal electric field component, E, and the trans-
verse magnetic field component, H.. to vary as cos(vz) while H,
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and B, must go as sin(yz) where v = (pr/L). Clearly, there arise
two distinct possibilities. First, there are the p = 0 modes which have
neither H, nor E, components. Second there exists the p > 0 modes
which have both E, and H, components present. These modes are
named HE (EH) if they become TE (TM) modes in the limit when
the off diagonal component of the ferrite tensor goes to zero.

The Maxwell equations, for the HE/EH modes, give rise to a pair
of coupled wave equations in E.(p, ¢) and H. (p, ¢)

VIH,+cH, +dE. =0
VIE. +aE, +bH, =0
where

/2
a=Fklep — k?er% -5

/

=zl

b= —ywpg

c= K. — P27
1

I3
d= fyweoer'u—.
7

This pair can be decoupled and the boundary conditions on the side
walls of the cavity enforced to give the characteristic equation for
the HE/EH modes

(£ T (o)) )

72 *T.(Jo:R)  \ oy ' 7.(Jo1R)
2 !
+7nu(i_i):0 3)
[LR a1 ()

where o1 and o2 are given by

_ (a+c¢)*x/(a—c)?+4bd
5 .

01,2

Simple bisection is then used to determine the eigenfrequencies to
the accuracy desired.

The p = 0 modes are identical to the TMy, m,0 modes of the
empty cavity. Their eigenfrequencies, however, are modified due to
the presence of the off-diagonal terms in the ferrite tensor

Ln,m 4
D @

where 25, is the m-th zero of the n-th order Bessel function.

frymo =

2R

IV. NUMERICAL RESULTS

A cavity with length to radius ratio of 2.0 and ferrite tensor
permeability given by (1) will be examined. The resonant frequencies
have been normalized to the lowest order empty cavity (i = uoI)
resonance: the TM; 1,0 mode.

Table 1 shows the first 10 resonances of the cavity and the
eigenfrequencies of two higher order modes as found by the FEM.
We generated FEM data for two different meshes, referred to here as
Mesh 1 and Mesh 2. Mesh 1 results in 360 unknowns for the n # 0
modes and 370 unknowns for the n = 0 modes. The difference is
due to the fact that E. is completely known on the axis of rotation
for the » # 0 modes, where it is equal to zero. Similarly, Mesh 2
gives 3686 unknowns for the n # 0 modes and 3752 unknowns
for the n = 0 modes. Both meshes use the following relative
permeability/permittivity values: ¢ = p, = 1. 0, ¢’ = 0. 1 and
e =1.0.

Table I shows the FEM solution agrees to within 1% of those
predicted by the analytical solution for Mesh 2. Moreover, no spurious
solutions are present in the solution set. We note that modes with
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TABLE I
COMPARISON OF CAVITY RESONANCES-BETWEEN CHARACTERISTIC
EquatioN AND FEM DatA FROM TwO DIFFERENT MESHES

fres/fO fres/fO % fres/fO %
mode Char. FEM | error | FEM | error
EQ Mesh 1 | Mesh 2
HE{I,I 0.9900 0.9987 | 0.88 | 0.9909 | 0.09
TMo,1,0 | 1.0050 1.0040 } 0.10 | 1.0050 | 0.00
HE;,; | 1.0257 1.0342 | 0.83 | 1.0266 | 0.09
EHp 1, | 1.1991 1.2092 | 0.84 | 1.2002 j 0.09
HE{L1 1.4177 1.4261 | 0.59 | 1.4187 | 0.07
HE;LI 1.4403 1.4492 | 0.62 | 1.4414 | 0.08
HEIl,z 1.4697 14943 | 1.67 | 1.4719 { 0.15
HE1_,1,2 1.5643 1.5853 | 1.34 | 1.5664 | 0.13
TM1,1,0 1.6014 1.6119 | 0.66 | 1.6033 | 0.12
TM7 ;0 | 1.6014 1.6134 | 0.75 | 1.6033 | 0.12
EHg1,4 | 2.7682 2.8303 | 2.24 | 2.7733 | 0.18
HEp3,1 | 2.9903 3.0666 | 2.55 | 3.0182 | 0.93
2.2 : .
s tm010 = eh011
5| & heltl+ o he211s

o heltl-

Normalized Frequency (f/ )

tu' fpd
Fig. 1. Normalized resonant frequencies of the first six modes of the
ferrite-filled cylindrical cavity as a function of the ratio of |p'/p].

higher values of p or m suffer more error. These modes have higher
field variation in the z and p directions, respectively, and thus require
a finer mesh in order to model this variation.

Fig. 1 exhibits the resonant frequencies of the first six modes as a
function of the ratio |p'/p|. This ratio is, of course, a function of the
applied dc biasing field and material parameters of the ferrite. The
solid line curves come from the characteristic equation and are shown
for comparison to the symbols which represent the FEM solutions.
The relative permeability/permittivity values used are: e = 1. 0, p =
1. 0, and p. = 1. 0. Because of the frequency normalization, this
figure describes all filled cavities with a length to radius ratio, L /R =
2. 0.

In practice, it is necessary to determine the resonances of the
L/R = 2.0 cavity when it is filled with a frequency dependent ferrite
material. The relevant ferrite equations describing this dependence are

Wwps
2

! —
I /ul = s a——" ®

and

war = 4w My wo = vHg. 6)
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Fig. 2. Resonant frequencies of a L = 2.0 cm, R = 1.0 cm ferrite-filled
cylindrical cavity.

Where Hy is the bias field, M, is the magnetization and ~ is the
gyrotropic ratio for this material. In Fig. 2, the dashed line corre-
sponds to a commercially available ferrite described by v = 17. 6
Mrad/(sec-Oersted), 4w My = 800 Gauss, and Hg = 1000 Oersted.
The intersections of the dashed line with the various solid lines gives
the resonant frequencies of each mode. The radius of the cavity is 1.0
cm, which corresponds to a normalization frequency of fo = 11. 475
GHz. Note the slope of the dashed line indicates operation above the
ferromagnetic resonance.

V. CONCLUSION

We have determined the eigenfrequencies of a ferrite-filled cylin-
drical resonator using a Finite Element Method (FEM) formulation
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which exploits the inherent axisymmetry of the problem. This method
expands the electric field using both node and edge-based elements
on a two-dimensional mesh. The resulting solutions are compared to
the analytical eigenvalues and are found to be free of spurious modes.
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