
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995 1207

[7]

[8]

[9]

[10]

[11]

[lfq

[13]

[14]

[15]

[16]

[17]

[18]

L. P. Vakanas, A. C. Cangellaris, and J. L. Prince, “A parametric

study of the attenuation constant of lossy microstrip lines,” IEEE Tram.

Micro~vave Tlreo~ Tech., vol. 38, no. 8, pp. 1136-1139, 1990.

V. V. Nokil’skiy and A. Y. Kozlov, “Electrodynamics analysis of the
losses in microstrip line conductors taking their multilayer structure into

account, ” Telecomnrwr. Radio Eng., vol. 41/42, no. 12 pp. 103–108,

1987.
H.-Y. Lee and T. Itoh, ‘ ‘Phenomenological loss equivalence method for
planar quasi-TEM transmission lines with a thin normal conductor or

superconductor,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 12,

pp. 19041909, 1989.

W. Heinrich, “Mode-Matching approach for superconducting planar
transmission lines including finite conductor thickness,” IEEE Mi-

crowave and Guided Wave Lett., vol. 1, no. 10, pp. 294-296, 1991
C. L. Holloway and E. F. Kuester, “Edge shape effects and quasiclosed
form expressions for the conductor loss of microsrrip lines,” Radio
Sci., vol. 29, no. 3, 1994.
C. L. Holloway, “Edge and surface shape effects on conductor loss
associated with planar circuits,” Electromagnetic Laboratory, Dept. of
Electrical and Computer Engineering, Univ. of Colorado, MIMICAD
Tech. Rep. no. 12, Appendix G, 1992.
M. A. Leontovich, “Approximate boundary condhions for an elec-

tromagnetic field at the surface of a highly conducting body, ” in

Issledovamya po Rasprostraneniyu Radiovoln, pt. 2. Moscow, 1948,
pp. 5–12, in Russian; also in _ Izbrannye Trudy: Teoreticheskaya

Fizika. Moscow: Nauka, 1985, pp. 351-355.

M. Kobayashi, “Longitudinal and transverse current distributions on
microstrip and their closed-form expression,” IEEE Trans. Microwave

Theory Tech., vol. 33, no. 9, pp. 784-788, 1985.
W. Schumacher, ‘ ‘Stromverteilung auf der grundflache der mikrostrip
leitung und deren auswirkung auf die ohmsche leitungsdampfung,”
AE~, band 33, pp. 207–212 1979.
M. Labelle and D. Jankovic, Dept. of Electrical and Computer Engineer-
ing, Electromagnetic Laboratory, Univ. of Colorado, Boulder, private
communication.

H. A. Wheeler, “Transmission-line properties of parallel wide strips by
a conformal-mapping approximation,” IEEE Trans. Microwaves Theory
Tech., vol. 12, no. 3, pp. 280-289, 1964.

H. W. Johnson and M. Graham, High-Speed Digital Design: A Handbook

of Black Magic. Englewood Cliffs, NJ: Prentice Hall, 1993 pp.

191-192.

Determination of the Eigenfrequencies of a

Ferrite-Filled Cylindrical Cavity Resonator

Using the Finite Element Method

Gilbert C. Chinn, Larry W. Epp, and Gregory M. Wilkins

Abstract-A formulation of the Finite Element Method (FEM) partic-

ular to axisymmetric problems containing anisotropic media is compared

to an analytic solution. In particular, the resonant frequencies of a
longitudinally biased ferrite-filled cylindrical cavity are examined. For

comparison, a solution of the characteristic equation for the lossless,
ferrite-filled cylindrical wavegnide was modified to give the resonant
frequencies of the cylindrical cavity. This analytical solution was then
used to examine the error in the FEM formulation for the anisotropic case.
It is noted that the FEM formulation for anisotropic material presented,
based on both node and edge-based elements, is found to be free of

spurious solutions.
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I. INTRODUCTION

I T IS NATURAL to extend tangential vector finite elements to

not only inhomogeneities, but to the anisotropic case. Specifically,

Wang and Ida [1] were able to show that this extension could be free

of spurious modes. Their method was based on the use of tetrahedral

and hexahedral elements. They noted that for permeability tensors

without off-diagonal terms, symmetry could be applied to simplify

the analysis. This simplification, however, is not suitable for ferrite-

filled cylindrical cavities. For a ferrite-filled cylindrical waveguide,

Dillon et al. [2] applied periodic boundaty conditions to solve for

phase constants. This procedure reduces the order of the solution to

one-half of the original three dimensional problem.

Another method of reducing computational complexity is detailed

here. By applying a Fourier mode expansion to the fields in these

azimuthally invariant geometries, simplification is inherent. All modal

information is retained, important for the ferrite-filled cavity where

the resonant frequencies of the +n modes can differ. The FEM

analysis is thus effectively reduced to two dimensions.

Axisymmetric geometries of interest in the past included circular

waveguides filled with longitudinally biased ferrites. Solutions for

the phase constants of these ferrite-filled circular waveguides can be

modified for the ferrite-filled cavity. Application of the appropriate

boundary conditions then gives a characteristic equation which is

solved for the eigenfrequencies. This solution will be outlined, and

used as comparison for the FEM analysis.

II. FINITE ELEMENT FORMULATION

The tensor characterizing a longitudinally biased ferrite is given by

‘=($’ ‘r!) ‘1)

where p, p’, and #, are functions of frequency and the DC biasing

field for a magnetized ferrite. Because of the axisymmetry of the

problem, the weak form of the wave equation is written in terms of

electric field components normal and transverse to the ~ direction

using first order triangular nodal elements and first order edge-based

finite elements [3]. The field is then expanded as a Fourier sum over

the azimuthal variable, 0. The basis elements for this expansion are
chosen to go ase~”d.This choice is necessary in order to correctly

model the fields within media characterized by (1). Moreover, it also

allows the eigenvalues, corresponding to the eigenfrequencies here, to

be found independently for each value of n by solving the generalized

eigenvalue equation for the cavity

[S]{a} = k:[’q{a}. (2)

This formalism yields sparse real-symmetric [S] and [T] matrices for

lossless, Hermitian p tensors. Consequently, standard mathematical

library routines are used to solve the generalized eigenvalue equation.

III. ANALYTIC CHARACTERISTIC EQUATION

The analytic characteristic equation for cylindrical ferrite waveg-

uides is due to Kales [4]. In this section, a brief summary of its

modification for the particular case of a metallic cavity is presented.

The cavity under consideration has a radius of R and a length of L

and is filled with a single material described by (1).

Application of the boundary conditions at the ends of the cavity

requires the longitudinal electric field component, E,, and the trans-

verse magnetic field component, Ht. to vary as cos ( -(~ ) while H,

0018–9480/95$04.00 01995 IEEE
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and ~~ must go as sin(yz) where -y = (pm/L). Clearly, there arise

two distinct possibilities. First, there are the p = O modes which have

neither Hz nor Ez components. Second there exists the p >0 modes

which have both E, and Hz components present. These modes are

named HE (EH) if they become TE (TM) modes in the limit when

the off diagonal component of the ferrite tensor goes to zero.

The Maxwell equations, for the HE/EH modes, give rise to a pair

of coupled wave equations in Ez (p, q5) and Hz (p, ~)

V;HZ + cHZ +dEz = O

V~Ez + aEx + bH, = O

where

This pair can be decoupled and the boundary conditions on the side

walls of the cavity enforced to give the characteristic equation for

the HE/EH modes

where CT1 and C2 are given by

(a+ c)+ ~(a - .)2 +4bd
al,z =

2

(3)

Simple bisection is then used to determine the eigenfrequencies to

the accuracy desired.

The p = O modes are identical to the TM. ,m,o modes of the

empty cavity. Their eigenfrequencies, however, are modified due to

the presence of the off-diagonal terms in the ferrite tensor

(4)

where zn, ~ is the rn-th zero of the n-th order Bessel function.

IV. NUMERICAL RESULTS

A cavity with length to radius ratio of 2.0 and ferrite tensor

permeability given by (1) will be examined. The resonant frequencies

have been normalized to the lowest order empty cavity (p = pOI)
resonance: the TMO, 1,0 mode.

Table I shows the first 10 resonances of the cavity and the

eigenfrequencies of two higher order modes as found by the FEM.

We generated FEM data for two different meshes, referred to here as

Mesh 1 and Mesh 2. Mesh 1 results in 360 unknowns for the n # O

modes and 370 unknowns for the n = O modes. The difference is

due to the fact that E, is completely known on the axis of rotation

for the n. # O modes, where it is equal to zero. Similarly, Mesh 2

gives 3686 unknowns for the n # O modes and 3752 unknowns

for the n = O modes. Both meshes use the following relative

permeability/permittivity values: M = p= = 1. 0, p’ = O. 1 and

e=l. o.

Table I shows the FEM solution agrees to within 1% of those

predicted by the analytical solution for Mesh 2. Moreover, no spurious

solutions are present in the solution set. We note that modes with

TABLE I

COMPARISONOF CAVITY RESONANCESBETWEEN CHARACTERISTIC
EQUATION AND FEM DATA FROM Two DIFFERENT MESHES

I fTw/.fo II fres/fo I % I fres/.fo I %
mode Char. FEM error FEM error

EQ Mesh 1 Mesh 2

HE+1,1,1 0.9900 0.9987 0.88 0.9909 0.09

TMO,l,O 1.0050 1.0040 0.10 1.0050 0.00

HE; ~ ~ 1.0257 1.0342 0.83 1.0266 0.09

EHO,l,l 1.1991 1.2092 0.84 1.2002 0.09

HE; I ~ 1.4177 1.4261 0.59 1.4187 0.07

HE; I ~ 1.4403 1.4492 0.62 1.4414 0.08

HE+1,1,2 1.4697 1.4943 1.67 1.4719 0.15

HE; I ~ 1.5643 1.5853 1.34 1.5664 0.13

TM~l o 1.6014 1.6119 0.66 1.6033 0.12

TM; I o 1.6014 1.6134 0.75 1.6033 0.12
?

1:11:1 1:11
EHCJ,I,4 2.7682 2.8303 2.24 2.7733 0.18

HECI,3J 2.9903 3.0666 2.55 3.0182 0.93

I II I I I I

2.2

-.
. 2

“.”

o 0.2 0.4 0.6 0.8 1

Fig. 1. Normalized resonant frequencies of the first six modes of the
ferrite-filled cylindrical cavity as a function of the ratio of Ip’ /p 1.

higher values of p or m suffer more error. These modes have higher

field variation in the z and p directions, respectively, and thus require

a finer mesh in order to model this variation.

Fig. 1 exhibits the resonant frequencies of the first six modes as a

function of the ratio Ip’ /p 1.This ratio is, of course, a function of the

applied dc biasing field and material parameters of the ferrite. The

solid line curves come from the characteristic equation and are shown

for comparison to the symbols which represent the FEM solutions.

The relative permeability/permittivity values used are: c = 1.0, ~ =

1. 0, and p= = 1. 0. Because of the frequency normalization, this

figure describes all filled cavities with a length to radius ratio, L/R =

2. 0.

In practice, it is necessary to determine the resonances of the

L/R = 2.0 cavity when it is filled with a frequency dependent ferrite

material. The relevant ferrite equations describing this dependence are

lP’/Pl = @ ‘y’w
— w — WOWM

and

CJM = 747r M0 wo = ;) Ho.

(5)

(6)
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which exploits the inherent axis ymmetry of the problem. This method

expands the electric field using both node and edge-based elements

on a two-dimensional mesh. The resulting solutions are compared to

the analytical eigenvalues and are found to be free of spurious modes.
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Flg.2. Resonant frequencies of a L = 2.0 cm, R = 1.0 cm ferrite-filled
cylindrical cavity.

Where HO is the bias field, MO is the magnetization and ~ is the

gyrotropic ratio for this material. In Fig. 2, the dashed line corre-

sponds to a commercially available ferrite described by ~ = 17. 6

Mrad/(see-Oersted), 4T&fo = 800 Gauss, and Ho = 1000 Oersted.

The intersections of the dashed line with the various solid lines gives

theresonant frequencies ofeachmode. Theradius of thecavityis 1.0

cm, which corresponds toanormalization frequency of fo = 11.475

GHz. Note the slope of the dashed line indicates operation above the

ferromagnetic resonance.

V. CONCLUSION

We have determined the eigenfrequencies of a ferrite-filled cylin-

drical resonator using a Finite Element Method (FEM) formulation
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